
1

 Last update: 27/09/17

Apifonica WebSDK

User Guide

Version 2.2.4

2017

2

 Last update: 27/09/17

Copyright Information

© 2017 MULTIREGIONAL TRANSITTELECOM Oy. All rights reserved.
This document is protected by copyright. No part of this document may be reproduced in any form by

any means without prior written authorization of MULTIREGIONAL TRANSITTELECOM Oy.

All brand names and product names mentioned in this document are trademarks or registered

trademarks of their respective owners.

Contact:

Address: Fredrikinkatu 55, 5th floor. OOlOO Helsinki

Phone: +358 9 31 57 51-61

E-mail: info@apifonica.com

Home Page: http://www.apifonica.com

http://www.apifonica.com/

3

 Last update: 27/09/17

Revision History

Date Version Description Author

2016.07.10 1.0.0 First release (Version 1.0.0) Grigory Tyschenko

2016.11.10 2.0.0 Updated function code

2017.02.09 2.1.0 WebRTC demo project has been updated

2017.04.24 2.2.0
WebSDK code has been updated to support push
notification service between mobile devices and the
Apifonica server

2017.05.21 2.2.1
WebSDK code has been updated with API
documentation

2017.06.29 2.2.2
The WebSDK server-side code has been updated
with a new version, 2.2.4.bld.2, to support the
Apifonica service

2017.09.11 2.2.3
The WebSDK server-side code has been updated.

Proofreading for grammar and style

Grigory Tyschenko

Alexey Tkachenko

2017.09.20
2.2.3

BLD.03
Document is edited and supplemented after testing
WebSDK installation from scratch

Alexey Tkachenko

2017.09.28 2.2.4
WebPhone (WebRTC) demonstration has been
updated

Grigory Tyschenko

4

 Last update: 27/09/17

CONTENTS
Introduction .. 5
General Features ... 5
Requirements .. 6
Server-side Setup .. 6
Starting the Server-side Service .. 10
Server-side Management Example .. 12
List of Available Commands for Server-side Management .. 14
WebPhone (WebRTC) Demonstration ... 15
Setting Up the WebPhone (WebRTC) Demonstration ... 17
Main Functions Used in WebPhone (WebRTC) Demonstration .. 18

5

 Last update: 27/09/17

Introduction

The objective of this WebSDK documentation is to give any developer with iOS or Android experience

the knowledge and understanding required to manage the functionality provided by the Apifonica

platform.

Particularly, the server-side WebSDK is required to operate the rented telephone numbers and

incoming/outgoing VOIP calls through communication between the apifonica.com server and the

client's iOS/Android/WebPhone applications with pre-installed MobileSDK packages. Interaction

between services is performed via REST API requests.

The WebSDK package consists of two parts:

 the server-side service;

 the WebPhone demo project.

The Web SDK server-side service is used to establish connections among mobile (iOS/Android) and

WebPhone devices and the Apifonica service.

The WebPhone (WebRTC) demo project contains functions to rent phone numbers and to make VoIP

phone calls in the customer's web browser.

General Features

Server-side Features:

 Server management. Server interacts with MobileSDK apps and Apifonica server;

 Monitoring of rented phone numbers;

 Monitoring of incoming/outgoing calls via XML scenarios;

 Synchronization of rented numbers stored on your server side with rented numbers stored in

your Apifonica account.

WebPhone Example Features:

 Renting phone numbers;

 Making incoming/outgoing VoIP calls based on the WebRTC service;

 Audio connection with audio codecs (OPUS/G722/G711(u/a-law)/SHA-256);

 Support for Google Chrome, Mozilla Firefox and Safari web browsers.

Android/iOS App

with MobileSDK

Customer server

side WebSDK

Apifonica.com

server

6

 Last update: 27/09/17

Requirements

 Node.js (ver.5.x+). Please refer to https://nodejs.org/en/download/package-manager/ for

Node.js installation instructions;

 npm (package is automatically installed during Node.js installation);

 MySQL (ver.5.x+). Please refer to https://dev.mysql.com/doc/refman/5.7/en/installing.html for

MySQL installation instructions.

Server-side Setup

1. Make sure you have all the required packages listed above installed.

2. Install Forever service in console mode. Forever will make your server persistent, so that once you

log off it will still run. It will restart even if node.js throws an error.

sudo npm install forever –global

3. Copy and unpack the WebSDK archive package directly to the server where WebSDK needs to be

deployed.

Note: If you are re-installing WebSDK over an existing installation, save the existing 'keys' folder and

config.js file to a backup location. When re-installing WebSDK, copy the 'keys' folder and config.js file

from the backup to the server's root folder.

4. Using console mode, open the project’s root folder, enter the command **npm install** and wait

until all the modules are installed:

cd apifonica_javascript_websdk

npm install

5. Register on the apifonica.com web site, copy your 'AccountSID' and 'AuthToken' codes from the

web site's API access section when you are logged in (as shown in the figure below) and enter these

values into the config.js file: sid (AccountSID), token (AuthToken):

apifo: {

 sid: "accxx-xxxx-xxxx",

 token: "autxx-xxx-xxxx"

 },

7

 Last update: 27/09/17

6. Set your domain name and ports for http and https connections in the config.js file:

// Deploy address

domain:develop?"http://127.0.0.1:8000":"http://websdk.yourserver.com:8000",

// port used to http

port:8000,

// port used to https

https_port:8080,

7. Open the package.json file and correct your domain name:

"url": "http://websdk.yourserver.com:8000/",

"sampleUrl": "http://websdk.yourserver.com:8000/",

8. For first-time installations, create a self-signed certificate from the project root using console mode:

cd apifonica_javascript_websdk

mkdir keys

cd keys

8

 Last update: 27/09/17

openssl genrsa -des3 -out server-tmp.key

openssl rsa -in server-tmp.key -out server.key

openssl req -new -key server.key -out server.csr

openssl x509 -req -days 3650 -in server.csr -signkey server.key -out server.crt

9. Set up the MySQL database.

 9.1. Using console mode, run these commands:

mysql –uUSERNAME –pPASSWORD;

CREATE DATABASE IF NOT EXISTS websdk_example;

USE websdk_example;

CREATE TABLE IF NOT EXISTS `websdk_sessions` (

 `session_id` VARCHAR(64) NOT NULL PRIMARY KEY,

 `data` LONGTEXT NOT NULL,

 `expires` integer

);

CREATE TABLE IF NOT EXISTS `websdk_number` (

 `id` SERIAL PRIMARY KEY NOT NULL,

 `number` varchar(16) NOT NULL UNIQUE,

 `password` varchar(64) NOT NULL,

 `number_sid` varchar(64) NOT NULL,

 `user_id` integer REFERENCES number ON DELETE SET NULL,

 `token` varchar(128),

 `push_id` varchar(512)

);

CREATE TABLE IF NOT EXISTS `websdk_users` (

 `id` SERIAL PRIMARY KEY NOT NULL ,

 `login` varchar(64) NOT NULL UNIQUE,

 `pass` varchar(64) NOT NULL,

 `app_id` varchar(128)

);

9

 Last update: 27/09/17

 9.2. Add one user with his/her account to the 'websdk_users' table:

INSERT INTO websdk_users (login,pass,app_id) VALUES ("login", "password",

"Application_SID_code");

where "Application_SID_code" is your real Application SID value. The Application SID

identifier can be created in the Applications section of the Apifonica account web site

(https://account.apifonica.com) by clicking the "New App" button, entering the new Application Name

and controller URL and saving the entered values. The new Application SID will appear in the list of

applications on the Manage Applications page (https://account.apifonica.com/applications/manage/):

 9.3. Exit the MySQL client:

exit;

Note: You can also create the database with the tables from the ready-to-use SQL schema in the

my_schema.sql file:

mysql –uUSERNAME –pPASSWORD < my_schema.sql;

Remember: You must add at least one user with his/her account to the 'websdk_users' table.

10. Edit the config.js file and insert your MySQL settings:

10

 Last update: 27/09/17

 db:{

 host : 'localhost',

 user : 'USERNAME',

 password: 'PASSWORD',

 database: 'websdk_example'

 },

11. Edit the config.js file and set the "default_user" value to the ID of the active user you have added

to the ‘websdk_users’ table in Step 10. This ID is used to identify the user whose rented numbers will

be synchronized with the Apifonica server:

default_user:develop?1:2,

Starting the Server-side Service

1. Start your server using these commands in console mode:

cd apifonica_javascript_websdk

forever start app.js

Note: You can also use the **node app.js** command to start the server, but this command does not

guarantee server restart after it goes offline:

node app.js

2. Use this command to preview the log files generated by running forever processes:

forever logs

3. Use **forever list** to verify that the server process is running. You need to make sure that no other

process with the same name is running at the same time:

forever list

11

 Last update: 27/09/17

4. To restart your server, use this command:

forever restart {process uid}

where the 'process_uid' can be seen by running the **forever list** command.

5. To stop the previously started server processes use this command in console mode:

forever stop app.js

6. Open this URL in your browser to view a server-side management example:

https://websdk.yourserver.com:8080/register

7. Open this URL in your browser to see a WebPhone (WebRTC) demonstration:

https://websdk.yourserver.com:8080/

If you have gone through all the topics, you can look at the WebSDK login form for a WebPhone

demonstration.

12

 Last update: 27/09/17

Server-side Management Example

1. Here is the URL which demonstrates server management and its relation to MobileSDK

applications and the apifonica.com server:

 https://websdk.yourserver.com:8080/register

2. Depending your server's security settings, a window may pop up prompting you to enter a login and

password in order to access the page that allows you to enter the authorization details issued to you

by your server administrator.

13

 Last update: 27/09/17

3. The page displays the current values of your user identifiers (AccountSID / AuthToken), depending

on the details shown in your Apifonica account on https://account.apifonica.com web site:

 Sid: 'AccountSID'

 Token: 'AuthToken'

These values can then be compared with the user data stored in your Apifonica account.

14

 Last update: 27/09/17

The page (https://websdk.yourserver.com:8080/register) also displays the current list of available

accounts for iOS/Android applications with pre-installed MobileSDK packages to connect to.

4. You can now enter the available commands for the WebSDK server side.

Note: The current demo case at the URL above is provided for demonstration purposes only.

Depending on your server security policies, it may be strongly unrecommended to use this example in

the live mode!

List of Available Commands for Server-side Management

1. Create a new account to connect WebPhone/iOS/Android applications with MobileSDK packages

installed, to rent a phone number or to use already rented phone numbers to make voice calls. The

user enters his/her desired username and password, sets the "Application SID" code for which a new

account will be created to connect with iOS/Android applications and clicks the "Register" button.

Note: The "Application SID" code identifier can be created in the Applications section of the Apifonica

Account web site (see Step 9.2 of the WebSDK installation above). If you are planning to have

multiple iOS/Android applications, it is possible to create an "Application SID" identifier for each of

them.

2. Synchronize the rented numbers stored on the WebSDK server with the rented numbers stored in

your account on apifonica.com. This command can be executed by pressing the "Sync" button. It is

recommended to perform this command immediately after the first launch of the WebSDK server. As

15

 Last update: 27/09/17

a result, the list of rented numbers will be displayed under the "Sync" button. Note that there is no

indication when the synchronization is finished.

Note: This command synchronizes the data in the MySQL database with the rented numbers only for

the current user ID specified in the config.js file:

default_user:develop?1:2

WebPhone (WebRTC) Demonstration

1. To view the WebPhone (WebRTC) demonstration, open this URL in your web browser:

https://websdk.yourserver.com:8080/

You should see the login form for the WebPhone demonstration.

2. Enter the login and password associated with the user ID used by default in Server-side

Management and click the "login" button.

16

 Last update: 27/09/17

3. Click the "Food Basket" button to rent a new phone number.

4. Select any rented phone number and click the "Use" button or click the "Get available numbers"

button to rent a new number.

17

 Last update: 27/09/17

5. You can now make any phone call.

Setting Up the WebPhone (WebRTC) Demonstration

1. Readme file: public/apifojs/readme.md

2. HTML file: templates/callout.jade

3. CSS file: templates/style/callout.less

4. JS file: public/js/callout.js

5. Interface elements in folder: public/img

6. Main files: app.js, engine.js, config.js

7. Router with API example: routes/index.js

18

 Last update: 27/09/17

Main Functions Used in WebPhone (WebRTC) Demonstration

Where It All Begins

The document's ready function is where the Apifonica JS Object is initialized:

 $(document).ready(function() {

 Apifo.onerror=function(error){

 ui.error(error);

 ui.ready_to_call();

 }

 Apifo.onready = onReady;

 Apifo.onfinish = ui.ready_to_call;

 Apifo.incoming = onIncoming;

 Apifo.init(number.number, number.password);

 });

Registering

The UI starts off with a basic login screen that accepts your credentials. To enter the username and

password values for login, use the following code:

 function login() {

 Apifo.init(number.number, number.password);

 }

The onReady listener function, which was registered at the start, is invoked when Apifonica sends

back the onReady event:

 function onReady() {

 ui.ready_to_call();

 ui.bind_call_events();

 }

Making a Call

Enter the number in the post-login UI and click the "Call" button. This action causes the following code

to run:

19

 Last update: 27/09/17

 call_button.onclick=function(){

 var number=document.getElementById('call_to').value

 if(!/\+?[\d]{10,15}/.test(number)){

 ui.error('Not correct number');

 }else{

 ui.start_counter();

 Apifo.call(number);

 }

 }

After discarding validations and UI state changes, the code boils down to one line:

 Apifo.call(number);

Handling Incoming Calls

By creating the onIncoming call listener, the Apifonica JS object can handle calls coming into the

Apifonica number.

 function onIncoming(call) {

 console.log('Incoming call from', call.caller);

 answer_button.onclick = function(){

 Apifo.answer();

 ui.start_counter();

 };

 hangup_button.onclick = function(){

 Apifo.cancel();

 ui.stop_counter();

 }

 }

The two actions that can be performed then are answer and reject.

Terminating a Call

This code may be used to terminate a call.

 Apifo.cancel();

